以下的第一个匹配问题摘自[1]:
问题:假如你有一个装了n个无差别的球的罐子,每个球分别贴了1,2,3,…,n的标签。每次取出一个球直至所有球均取出,那么,至少有1个球的取出顺序与它的标签一致的概率是多少(例如,标签为2的球是第2个取出来的)?
解答 n个球有n!种排列顺序,假设在某一排列中第j个元素代表第j个取出的球。令Pj(j=1,2,…,n)代表某一给定的排列的第j个取出的球的标签为j,并且令Aj代表具有属性Pj的排列的集合。那么,至少有1个球的取出顺序与它的标签一致的排列的数量Ln为
$$! \begin{array}{l} {{L}_{n}}=|{{A}_{1}}\cup {{[......]