收集与调和级数

Collecting Coupons: Coupons in cereal boxes are numbered 1 to 5, and a set of one of each is required for a prize. With one coupon per box, how many boxes on the average are required to make a complete set?

这是《Fifty Challenging Problems in Probability with Solutions》书中的第14个题目[1]。在第一个盒子中,我们得到其中一个数字[......]

阅读全文 »

生日问题(Birthday Problem)

生日问题[1-2]是指在随机选择的一群人当中有两人的生日相同的概率。如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%;对于60或者更多的人,这种概率要大于99%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。

假设有n个人在同一房间内,不考虑特殊因素,例如闰年、双胞胎,并且假设一年365日出生概率是均匀分布的。首先计算每个人的生日日期都不同的概率为:
$$!\begin{equation} \overline{p(n,365)}=\frac{A_{365}^{n}}{{{365}^{n}}} \en[......]

阅读全文 »

最佳奖品问题、麦穗问题、相亲问题、炮灰模型、秘书问题—最优停止理论

在读Ross的《Introduction to Probability Models》时[1],有个例子的原理被广泛讨论——

(最佳奖品问题) 假设我们可以从一系列先后宣布的n个不同的奖项中选取一个,在一个奖项宣布后我们必须立刻决定是接受还是拒绝转而考虑随后的奖项。我们只能根据该奖项与前面已经宣布的奖项的比较决定是否接受它。就是说,例如,当第5个奖项宣布时,我们知道它与前面已经宣布的4个奖是如何比较的。假设拒绝了一个奖就失去了这次机会,我们的目标是使得到最佳奖的概率达到极大。假定奖项的所有n!个次序都是等可能的,我们该怎样做?

 选定一个k,0≦k≦n,同时考虑前k个都拒绝并接受[......]

阅读全文 »

连续抛掷一枚出现正面的概率为p的硬币

一、首次出现正面时抛掷次数的平均值E(N)。

令Y=1表示第一次掷硬币的结果是正面,Y=0表示第一次掷硬币的结果是反面,则:

E(N) = E(N|Y=0) × P(Y=0) + E(N|Y=1) × P(Y=1)
=[1 + E(N)] × (1-p) + 1×p
=1 + (1-p) × E(N)

所以:E(N) = 1/p

另一种方法是使用吸收马尔可夫链,以硬币处于正面的状态为吸收状态,易得标准形式的转移矩阵为:


则有:N = (I-B)-1 =[......]

阅读全文 »