贝特朗悖论(Bertrand's Paradox)

贝特朗悖论:在一给定圆内所有的弦中任选一条弦,求该弦的长度长于圆的内接正三角形边长的概率。

至少有三种方法可以在一个圆上随机选择一条弦,如下:
Bertrand's Paradox
解法一:如左图,由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求。所有方向是等可能的,则所求概率为1/3。此时假定端点在圆周上均匀分布。
解法二:如中图,由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4点与3/4点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为1/2。此时假定弦的中心在直径上均匀分布。
解法三:如右图,弦被其中点位置唯一确定。只有[......]

阅读全文 »

浦丰投针问题(Buffon’s Needle Problem)

浦丰投针问题(Buffon’s Needle Problem)是几何概率的经典问题之一,由George-Louis Leclerc和Comte de Buffon于1777年提出——平面上画有等距离为D(D>0)的无限多条平行线,向此平面投掷一根长度为L(L≤D)的针,则该针与任一平行线相交的概率Pcut为:


重复进行投掷的试验,记下试验总次数Nd和针与平行线相交的次数Nc,则利用以上公式可以近似求得圆周率π:
$$!\pi =\frac{2L}{{{P}_{cut}}D}\approx \frac{2L}{({{N}[......]

阅读全文 »

单位区间[0 1]里随机分布n个点

在数轴上的区间[0 1]上有两个随机点A和B,它们的坐标服从[0 1]上的均匀分布,即X1~U(0,1),X2~U(0,1)。则此两点间距离的数学期望是多少?

两点间的距离X = |X1-X2| = max{X1,X2} - min{X1,X2}。令Y = max{X1,X2}, Z = min{X1,X2},两者的累积分布函数为:

F(Y) = P(Y≦y) = P(X1≦y & X2≦y) = P(X1≦y) × P(X2≦y) = y×y = y2

F(Z) = P(Z≦z) = 1-P(Z≧z) = 1-P(X1≧z & X2≧z) = 1 - P(X1≧z) × P(X[......]

阅读全文 »